Engineering aqueous electrolytes with vicinal s‐based organic additives for highly reversible zinc‐ion batteries

dc.contributor.authorLi, Teng
dc.contributor.authorNaveed, Ahmad
dc.contributor.authorZheng, Jiongzhi
dc.contributor.authorChen, Bixian
dc.contributor.authorJiang, Mingfeng
dc.contributor.authorLiu, Biyuan
dc.contributor.authorZhou, Yu
dc.contributor.authorLi, Xiaowei
dc.contributor.authorSu, Mingru
dc.contributor.authorGuo, Ruiqiang
dc.contributor.authorSumner, Joy
dc.contributor.authorLi, Cheng Chao
dc.contributor.authorLiu, Yunjian
dc.date.accessioned2025-06-30T10:30:48Z
dc.date.available2025-06-30T10:30:48Z
dc.date.freetoread2025-06-30
dc.date.issued2025-05-19
dc.date.pubOnline2025-03-25
dc.description.abstractThe commercial deployment of aqueous zinc‐ion batteries (AZIBs) is hampered by dendrites, the hydrogen evolution reaction (HER), and corrosion reactions. To tackle these challenges, we have introduced 3,3′‐dithiobis‐1‐propanesulfonic acid disodium salt (SPS), a symmetrical sulfur‐based organic salt, as an electrolyte additive for AZIBs. Unlike conventional electrolyte additives that favor (002) deposition, SPS enables dense (100) growth through a unique symmetrically aligned concentration‐controlled adsorption network, affording structural uniformity and compactness to the Zn deposit layer. The dual‐action symmetrical SPS additive adsorbs onto the Zn surface via vicinal sulfur atoms, blocking electrolyte access to the Zn anode, enhancing the transportation kinetics of Zn2+, and simultaneously promoting desolvation by displacing water molecules from the solvation shell. This synergistic effect improves the stability of the Zn anode by mitigating HER and corrosion, resulting in over 1100 h of cycling at 5 mA cm−2, 5 mAh cm−2, stable operation at even 15 mA cm−2, 15 mAh cm−2, and achieving impressive Coulombic efficiency (CE) of 99.41%. As validation, the Zn/NaV3O8·1.35H2O cell with SPS‐additive afforded high cycling stabilization and excellent capacity retention of 95.5%. This study offers valuable insights for advancing AZIBs and other metal‐based batteries.
dc.description.journalNameAngewandte Chemie
dc.description.sponsorshipNational Natural Science Foundation of China: 22350410378
dc.description.sponsorshipNational Natural Science Foundation of China: 52274299
dc.identifier.citationLi T, Naveed A, Zheng J, et al., (2025) Engineering aqueous electrolytes with vicinal s‐based organic additives for highly reversible zinc‐ion batteries. Angewandte Chemie, Volume 137, Issue 21, May 2025. Article number e202424095en_UK
dc.identifier.eissn1521-3757
dc.identifier.elementsID566892
dc.identifier.issn0044-8249
dc.identifier.issueNo21
dc.identifier.paperNoe202424095
dc.identifier.urihttps://doi.org/10.1002/ange.202424095
dc.identifier.urihttps://dspace.lib.cranfield.ac.uk/handle/1826/24085
dc.identifier.volumeNo137
dc.languageEnglish
dc.language.isoen
dc.publisherWileyen_UK
dc.publisher.urihttps://onlinelibrary.wiley.com/doi/10.1002/ange.202424095
dc.rightsAttribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject40 Engineeringen_UK
dc.subject4016 Materials Engineeringen_UK
dc.subject34 Chemical Sciencesen_UK
dc.subject3406 Physical Chemistryen_UK
dc.subject7 Affordable and Clean Energyen_UK
dc.subjectOrganic Chemistryen_UK
dc.subjectAqueous zinc-ion batteriesen_UK
dc.subjectDendrite-freeen_UK
dc.subjectDynamic adsorptionen_UK
dc.subjectElectrolyte additivesen_UK
dc.subjectVertical (100) depositionen_UK
dc.titleEngineering aqueous electrolytes with vicinal s‐based organic additives for highly reversible zinc‐ion batteriesen_UK
dc.typeArticle
dcterms.dateAccepted2025-03-13

Files

Original bundle

Now showing 1 - 2 of 2
Loading...
Thumbnail Image
Name:
Engineering_aqueous_electrolytes-2025.pdf
Size:
12.96 MB
Format:
Adobe Portable Document Format
Description:
Accepted version
Loading...
Thumbnail Image
Name:
Engineering_aqueous_electrolytes_suppl-2025.pdf
Size:
6.35 MB
Format:
Adobe Portable Document Format
Description:
Supporting information

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.63 KB
Format:
Plain Text
Description: