Optoelectronic and spectroscopic characterization of vapour-transport grown Cu2ZnSnS4 single crystals

dc.contributor.authorNg, Tat Ming
dc.contributor.authorWeller, Mark T
dc.contributor.authorKissling, Gabriela P
dc.contributor.authorPeter, Laurence M
dc.contributor.authorDale, Philip
dc.contributor.authorBabbe, Finn
dc.contributor.authorDe Wild, Jessica
dc.contributor.authorWenger, Bernard
dc.contributor.authorSnaith, Henry
dc.contributor.authorLane, David W.
dc.date.accessioned2017-03-28T14:16:25Z
dc.date.available2017-03-28T14:16:25Z
dc.date.issued2017-02
dc.description.abstractSingle crystals of Cu2ZnSnS4 (CZTS) have been grown by iodine vapor transport with and without addition of NaI. Crystals with tin-rich copper-poor and with zinc-rich copper-poor stoichiometries were obtained. The crystals were characterized by single crystal X-ray diffraction, energy-dispersive X-ray spectroscopy, photocurrent spectroscopy and electroreflectance spectroscopy using electrolyte contacts as well as by spectroscopic ellipsometry, Raman spectroscopy and photoluminescence spectroscopy (PL)/decay. Near-resonance Raman spectra indicate that the CZTS crystals adopt the kesterite structure with near-equilibrium residual disorder. The corrected external quantum efficiency of the p-type crystals measured by photocurrent spectroscopy approaches 100% close to the bandgap energy, indicating efficient carrier collection. The bandgap of the CZTS crystals estimated from the external quantum efficiency spectrum measured using an electrolyte contact was found to be 1.64–1.68 eV. An additional sub-bandgap photocurrent response (Urbach tail) was attributed to sub bandgap defect states. The room temperature PL of the crystals was attributed to radiative recombination via tail states, with lifetimes in the nanosecond range. At high excitation intensities, the PL spectrum also showed evidence of direct band to band transitions at ∼1.6 eV with a shorter decay time. Electrolyte electroreflectance spectra and spectra of the third derivative of the optical dielectric constant in the bandgap region were fitted to two optical transitions at 1.71 and 1.81 eV suggesting a larger valence band splitting than predicted theoretically. The high values of the EER broadening parameters (192 meV) indicate residual disorder consistent with the existence of tail states.en_UK
dc.identifier.citationTat MN, Weller MT, Kissling GP, et al., Optoelectronic and spectroscopic characterization of vapour-transport grown Cu2ZnSnS4 single crystals. Journal of Materials Chemistry A, Volume 5, Issue 3, 2017 pp. 1192-1200en_UK
dc.identifier.urihttp://dx.doi.org/10.1039/c6ta09817g
dc.identifier.urihttp://dspace.lib.cranfield.ac.uk/handle/1826/11674
dc.publisherRoyal Society of Chemistryen_UK
dc.rightsAttribution-NonCommercial 4.0 International
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.titleOptoelectronic and spectroscopic characterization of vapour-transport grown Cu2ZnSnS4 single crystalsen_UK
dc.typeArticleen_UK

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
vapour-transport_grown_Cu2ZnSnS4_single_crystals-2017.pdf
Size:
3.31 MB
Format:
Adobe Portable Document Format
Description:
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.79 KB
Format:
Item-specific license agreed upon to submission
Description: