Role of acid hydrocarbon chain length on the cure kinetics and thermal degradation of epoxy- dicarboxylic acid vitrimers

dc.contributor.authorShen, Shouqi
dc.contributor.authorSkordos, Alexandros A.
dc.date.accessioned2025-02-24T14:09:45Z
dc.date.available2025-02-24T14:09:45Z
dc.date.freetoread2025-02-24
dc.date.issued2025-03-19
dc.date.pubOnline2025-02-21
dc.description.abstractThis study investigates the cure kinetics and thermal degradation of epoxy-dicarboxylic acid vitrimers, focusing on the effect of methylene chain length. A diffusion-controlled, modified autocatalytic kinetics model was applied, based on Differential Scanning Calorimetry (DSC) data, whilst Thermogravimetric Analysis (TGA) was used to assess degradation. Increasing the methylene chain length enhanced thermal stability, with decomposition temperatures ranging from 430 °C for the hexanedioic acid formulation to 500 °C for the tetradecanedioic acid formulation. The curing process transitioned through three distinct kinetics regimes: an initial non-catalysed phase, followed by an autocatalytic stage, and finally, a diffusion-limited phase at high crosslink density. This shift leads to a 30 %-70 % reduction in apparent activation energy during the early stages. The activation energy displays a complex behaviour, initially decreasing with longer methylene sequences before rising due to competing effects of chain flexibility and reduced reactivity. Kissinger and isoconversional analyses confirmed reliable activation energy values. Despite some discrepancies in the dodecanedioic acid formulation due to secondary reactions, the model exhibits a good approximation, with an average goodness-of-fit of 84.4 %. This analysis improves understanding of vitrimer cure kinetics and thermal behaviour, providing insights for optimising industrial applications.
dc.description.journalNameEuropean Polymer Journal
dc.identifier.citationShen S, Skordos AA. (2025) Role of acid hydrocarbon chain length on the cure kinetics and thermal degradation of epoxy- dicarboxylic acid vitrimers. European Polymer Journal, Volume 228, March 2025, Article number 113812en_UK
dc.identifier.elementsID563973
dc.identifier.issn0014-3057
dc.identifier.paperNo113812
dc.identifier.urihttps://doi.org/10.1016/j.eurpolymj.2025.113812
dc.identifier.urihttps://dspace.lib.cranfield.ac.uk/handle/1826/23515
dc.identifier.volumeNo228
dc.languageEnglish
dc.language.isoen
dc.publisherElsevieren_UK
dc.publisher.urihttps://www.sciencedirect.com/science/article/pii/S0014305725001004?via%3Dihub
dc.relation.isreferencedbyhttps://doi.org/10.6084/m9.figshare.27060847
dc.rightsAttribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectVitrimersen_U
dc.subjectEpoxy resinsen_U
dc.subjectDicarboxylic acidsen_U
dc.subjectCure kineticsen_U
dc.subjectThermal degradationen_U
dc.subjectDifferential Scanning Calorimetry (DSC)en_U
dc.subjectThermogravimetric Analysis (TGA)en_U
dc.subject40 Engineeringen_U
dc.subject4016 Materials Engineeringen_U
dc.subject7 Affordable and Clean Energyen_U
dc.subjectPolymersen_U
dc.subject3403 Macromolecular and materials chemistryen_U
dc.titleRole of acid hydrocarbon chain length on the cure kinetics and thermal degradation of epoxy- dicarboxylic acid vitrimersen_U
dc.typeArticle
dcterms.dateAccepted2025-02-06

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Role_of_acid-2025.pdf
Size:
2.04 MB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.63 KB
Format:
Plain Text
Description: