Transport Systems
Permanent URI for this collection
Browse
Browsing Transport Systems by Subject "'Aerospace Engineering'"
Now showing 1 - 3 of 3
Results Per Page
Sort Options
Item Open Access Application of fibre optic sensing systems to measure rotor blade structural dynamics - underlying data(Cranfield University, 2021-03-12 09:17) James, Stephen; Kissinger, Thomas; Tatam, Ralph; Barrington, James; Chehura, Edmon; Weber, Simone; Mullaney, Kevin; Zanotti Fragonara, Luca; Petrunin, Ivan; Staines, StephenRefer to the paper for full details. Fig9a.csv: Comparison of the Power Spectral Density (PSD) of data recorded by the direct optical fibre shape sensing system, an optical fibre Bragg grating strain sensor and a 1D accelerometer with finite element modeling predictions, measured on the top surface of an Airbus Helicopters H135 bearingless main rotor blade on the quarter chord line at approximately 40% rotor radius. Fig9b.csv: Comparison of the Power Spectral Density (PSD) of data recorded by the direct optical fibre shape sensing system, an optical fibre Bragg grating strain sensor and a 1D accelerometer with finite element modeling predictions, measured on the top surface of an Airbus Helicopters H135 bearingless main rotor blade on the quarter chord line at approximately 60% rotor radius. Fig10_FBG_top.csv: Power Spectral Density (PSD) of the 7th fibre Bragg grating strain (FBG) sensor (FBG7) in the three FBG arrays bonded to the top surface of the Airbus Helicopters H135 bearingless main rotor blade, located at approximately 60% rotor radius. Fig10_FBG_bottom.csv: Power Spectral Density (PSD) of the 7th fibre Bragg grating strain sensor (FBG7) in the three FBG arrays bonded to the bottom surface of the Airbus Helicopters H135 bearingless main rotor blade, located at approximately 60% rotor radius. Fig11.csv: Time series of raw data of 3F frequency input collected at approximately 60% rotor radius for the accelerometer, fibre Bragg grating strain sensor and direct optical fibre shape sensor (vertical direction). Fig12.csv: Comparison of Power Spectral Density (PSD) for the 3F mode measured at approximately 60% rotor radius by the accelerometer, fibre Bragg grating strain sensor and direct optical fibre shape sensor (vertical direction). Fig14.csv: Mode shapes measured using the direct optical fibre shape sensor Fig15.cvs: Comparison of normalised displacement mode shapes measured using a 1D accelerometer, the direct optical fibre shape sensor with the finite element model prediction Fig16.csv: Normalised angle measurements performed by the direct optical fibre shape sensor with the ouput from the FE model for Mode 5F Fig17.csv:Comparison of normalised strain mode shapes determined by the FBG strain sensors and the output from the FE model.Item Open Access Data supporting: 'Fibre-optic measurement of strain and shape on a helicopter rotor blade during a ground run: data for the measurement of shape'(Cranfield University, 2022-09-01 15:50) Kissinger, Thomas; James, Stephen; Weber, Simone; Mullaney, Kevin; Chehura, Edmon; Barrington, James; Staines, Stephen; Tatam, RalphFSI_Phase_Data_Shape_CORD.csv contains the raw phase data from the three Fibre Segment interferometry array installed on the Direct Optical Fibre Shape Sensing Rod described in the paper: "Fibre-optic measurement of strain and shape on a helicopter rotor blade during a ground run - part 2: measurement of shape", Smart Materials and Structure, online 25 May 2022. Shape_Data_Vertical_CORD.csv contains the processed shape data in the vertical (flapping) direction, for the T&B2 ground run. Note that the position measurements are relative to the first FSI reflector on the rod, not to the centre of rotation of the blade. Shape_Data_Horizontal_CORD.csv contains the processed shape data n the horizontal (lagging) direction, for the T&B2 ground run. Note that the position measurements are relative to the first FSI reflector on the rod, not to the centre of rotation of the blade.Item Open Access Data supporting: 'Fibre-optic measurement of strain and shape on a helicopter rotor blade during a ground run: data for the measurement of strain'(Cranfield University, 2022-09-01 15:49) James, Stephen; Kissinger, Thomas; Weber, Simone; Mullaney, Kevin; Chehura, Edmon; Barrington, James; Tatam, RalphFBG_Data_CORD.csv contains the raw wavelength data from the 10 FBGs (G1-G10) recorded during the ground run detailed within the paper "Fibre-optic measurement of strain and shape on a helicopter rotor blade during a ground run - part 1: measurement of strain", James et al. Smart Materials and Structures, available online, May 2022. The unit of the "Time" column is seconds, while the units of columns G1-G10 are nanometers. FSI_Data_CORD.csv contains the raw phase data obtained from the interferometers formed between the reflectors (R1-R10,) and the cleaved end of the optical fibre, recorded during the ground run detailed within the paper The unit of the "Time" column is seconds, while the units of columns R1-R10 are radians.