An enabling architecture for computational cost efficiency in predictive maintenance digital twins

dc.contributor.authorAbdullahi, Ibrahim
dc.contributor.authorLongo, Stefano
dc.contributor.authorSamie, Muhammad
dc.date.accessioned2025-02-28T10:18:29Z
dc.date.available2025-02-28T10:18:29Z
dc.date.freetoread2025-02-28
dc.date.issued2024-11-08
dc.date.pubOnline2024-12-08
dc.description.abstractAs digital twins emerge to provide a replication of physical assets in the digital space, the application of predictive maintenance of industrial asset becomes more effective. Developing digital twins for the predictive maintenance case study leverages Internet of Things, cloud computing and machine learning. While these technologies extend the necessary tools for deploying predictive maintenance digital twins, an enabling architecture facilitated by fog computing positions predictive maintenance digital twins for improved computational cost and latency than centralizing in the cloud or running locally at the edge. This work presents the application of a distributed digital framework, showing the benefits of better compute utilization and latency by adopting a distributed digital twin framework for predictive maintenance of wind turbine components in a wind farm.
dc.description.conferencename2024 International Conference on Cyber-Physical Social Intelligence (ICCSI)
dc.description.sponsorshipThis work acknowledges support from the Petroleum Technology Development Fund (PTDF), Nigeria, and Cranfield University’s Digital Aviation Research & Technology Center (DARTEC), UK.
dc.identifier.citationAbdullahi I, Longo S, Samie M. (2024) An enabling architecture for computational cost efficiency in predictive maintenance digital twins. In: 2024 International Conference on Cyber-Physical Social Intelligence (ICCSI), 8-12 Nov 2024, Doha, Qataren_UK
dc.identifier.elementsID561716
dc.identifier.urihttps://doi.org/10.1109/iccsi62669.2024.10799418
dc.identifier.urihttps://dspace.lib.cranfield.ac.uk/handle/1826/23534
dc.language.isoen
dc.publisherIEEEen_U
dc.publisher.urihttps://ieeexplore.ieee.org/document/10799418
dc.rightsAttribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subject4606 Distributed Computing and Systems Softwareen_U
dc.subject46 Information and Computing Sciencesen_U
dc.subjectMachine Learning and Artificial Intelligenceen_U
dc.subject7 Affordable and Clean Energyen_U
dc.subject9 Industry, Innovation and Infrastructureen_U
dc.titleAn enabling architecture for computational cost efficiency in predictive maintenance digital twinsen_U
dc.typeConference paper
dcterms.coverageDoha, Qatar
dcterms.dateAccepted2024-09-03
dcterms.temporal.endDate12 Nov 2024
dcterms.temporal.startDate8 Nov 2024

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
An_enabling_architecture_for_computational_cost_efficiency-2025.pdf
Size:
951.17 KB
Format:
Adobe Portable Document Format
Description:
Accepted version

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.63 KB
Format:
Plain Text
Description: