Reinforcement learning system of UAV for antenna beam localization

Loading...
Thumbnail Image

Date published

Free to read from

Authors

Omi, Saki
Shin, Hyosang
Tsourdos, Antonios
Espeland, Joakim
Buchi, Andrian

Supervisor/s

Journal Title

Journal ISSN

Volume Title

Publisher

Department

Course name

ISSN

2643-6795

Format

Citation

Omi S, Hyo-Sang S, Tsourdos A, et al., (2022) Reinforcement learning system of UAV for antenna beam localization. In: 2021 IEEE Conference on Antenna Measurements & Applications (CAMA), 15-17 November 2021, Antibes Juan-les-Pins, France, pp. 61-65

Abstract

Along with the growth of satellite communication industry, the demands and benefits to perform satellite terminal antenna evaluation are increasing. UAV based in-situ measurement can increase the efficiency of the measurement procedure. Main beam localization is a necessary procedure to execute the antenna evaluation test. To accelerate the process of finding the antenna beam centre, this paper develop a meta-reinforcement learning based algorithm. The developed algorithm is compared with other methods and it showed the best performance in terms of accuracy, robustness and travelling efficiency not only in the simulated radiation pattern environment but also in the empirically obtained radiation pattern.

Description

Software Description

Software Language

Github

Keywords

antenna measurement, UAV measurement, beam localization, meta-reinforcement learning

DOI

Rights

Attribution-NonCommercial 4.0 International

Funder/s

Relationships

Relationships

Resources