Sense and avoid using hybrid convolutional and recurrent neural networks

dc.contributor.authorNavarro, Daniel Vidal
dc.contributor.authorLee, Chang-Hun
dc.contributor.authorTsourdos, Antonios
dc.date.accessioned2020-03-04T11:06:49Z
dc.date.available2020-03-04T11:06:49Z
dc.date.issued2019-11-25
dc.description.abstractThis work develops a Sense and Avoid strategy based on a deep learning approach to be used by UAVs using only one electro-optical camera to sense the environment. Hybrid Convolutional and Recurrent Neural Networks (CRNN) are used for object detection, classification and tracking whereas an Extended Kalman Filter (EKF) is considered for relative range estimation. Probabilistic conflict detection and geometric avoidance trajectory are considered for the last stage of this technique. The results show that the considered deep learning approach can work faster than other state-of-the-art computer vision methods. They also show that the collision can be successfully avoided considering design parameters that can be adjusted to adapt to different scenarios.en_UK
dc.identifier.citationVidal Navarro D, Lee C-H, Tsourdos A. (2019) Sense and avoid using hybrid convolutional and recurrent neural networks. IFAC-PapersOnLine, Volume 52, Issue 12, pp. 61-66en_UK
dc.identifier.issn2405-8963
dc.identifier.urihttps://doi.org/10.1016/j.ifacol.2019.11.070
dc.identifier.urihttps://dspace.lib.cranfield.ac.uk/handle/1826/15220
dc.language.isoenen_UK
dc.publisherElsevieren_UK
dc.rightsAttribution-NonCommercial 4.0 International*
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/*
dc.subjectSenseen_UK
dc.subjectAvoiden_UK
dc.subjectneural networksen_UK
dc.subjectdeep learningen_UK
dc.subjectcomputer visionen_UK
dc.subjectKalman filteren_UK
dc.subjectrange estimationen_UK
dc.subjectUAVen_UK
dc.titleSense and avoid using hybrid convolutional and recurrent neural networksen_UK
dc.typeArticleen_UK

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
hybrid_convolutional_and_recurrent_neural_networks-2019.pdf
Size:
687.01 KB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.63 KB
Format:
Item-specific license agreed upon to submission
Description: