Recursive least squares with log-determinant divergence regularisation for online inertia identification

dc.contributor.authorCho, Namhoon
dc.contributor.authorLee, Taeyoon
dc.contributor.authorShin, Hyo-Sang
dc.date.accessioned2024-09-03T13:34:30Z
dc.date.available2024-09-03T13:34:30Z
dc.date.freetoread2024-09-03
dc.date.issued2024-05-13
dc.date.pubOnline2024-08-08
dc.description.abstractThis study presents a recursive algorithm for solving the regularised least squares problem for online identification of rigid body dynamic model parameters with emphasis on the physical consistency of estimated inertial parameters. One of the geometric approaches is to use a regulariser that represents how close the pseudo-inertia matrix is to a given reference on the feasible manifold in the regression problem. The proposed extension enables memory-efficient online learning in addition to the benefits of geometry-aware convex regularisation using the log-determinant divergence of the pseudo-inertia matrix. Also, the recursive version endows the estimator with the capability to deal with time-variation of parameters by introducing an optional forgetting mechanism. The characteristics of the recursive regularised least squares algorithm is demonstrated using the MIT Cheetah 3 leg swinging experiment dataset and compared to the existing batch optimisation method.
dc.description.conferencename2024 IEEE International Conference on Robotics and Automation (ICRA)
dc.format.extent12578-12584
dc.identifier.citationCho N, Lee T, Shin H-S. (2024) Recursive least squares with log-determinant divergence regularisation for online inertia identification. In: Proceeding Volume 10, 2024 IEEE International Conference on Robotics and Automation (ICRA), 13 - 17 May 2024, Yokohama, Japan, pp. 12578-12584
dc.identifier.eisbn979-8-3503-8457-4
dc.identifier.elementsID549983
dc.identifier.urihttps://doi.org/10.1109/icra57147.2024.10610389
dc.identifier.urihttps://dspace.lib.cranfield.ac.uk/handle/1826/22873
dc.identifier.volumeNo10
dc.language.isoen
dc.publisherIEEE
dc.publisher.urihttps://ieeexplore.ieee.org/abstract/document/10610389
dc.rightsAttribution-NonCommercial 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by-nc/4.0/
dc.subject46 Information and Computing Sciences
dc.subject4007 Control Engineering, Mechatronics and Robotics
dc.subject40 Engineering
dc.titleRecursive least squares with log-determinant divergence regularisation for online inertia identification
dc.typeConference paper
dcterms.coverageYokohama, Japan
dcterms.temporal.endDate17 May 2024
dcterms.temporal.startDate13 May 2024

Files

Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Recursive_least_squares_with_log-determinant-2024.pdf
Size:
3.17 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.63 KB
Format:
Plain Text
Description: