ProBCA Taxonomy of Discrete MCDA Methods for Ranking

dc.contributor.authorKirensky, Roman
dc.contributor.authorLawson, Craig
dc.contributor.authorSalonitis, Konstantinos
dc.date.accessioned2024-06-12T12:54:35Z
dc.date.available2024-06-12T12:54:35Z
dc.date.issued2023-11-01 09:46
dc.description.abstractThis book is accompanied by the publication titled 'A SYNOPTIC TAXONOMY OF DISCRETE MULTI-CRITERIA DECISION ANALYSIS METHODS FOR RANKING', which introduces the presented taxonomy for MADM (Multi-Attribute Decision-Making) methods for ranking tasks. The taxonomy consists of: - the collection of 300 MADM methods covering the various parts of a typical MCDA (Multi-Criteria Decision Analysis) process; - the characterisation system for the recorded methods called ProBCA (Problem-Based Characterisation Approach). The title (ProBCA) reflects an application-oriented mindset that the presented taxonomy is based on. It focuses on the DP (Decision Problem) parameters and how the DM (Decision Maker) deals with it to describe the presented methods, rather than the intrinsic characteristics of the methods itself. The taxonomy is operated by picking from the list of available values for each of the 17 descriptor parameters characterising the possible DP context specifics and DM constraints. If a method (or several) matching the provided DP characterisation is available in the presented collection, it will remain visible after filtering for appropriate values while the remaining methods will become hidden. It is possible to use partial DP characterisation to identify a range of potentially suitable methods if the DM is flexible about theof defining define the DP and how to approach its solution. The number of methods matching each of the available characterising values is always shown next to these values in the top section of the taonomy, and is progressively updated as the DM proceeds with value selection. The taxonomy is dedicated to allow a broad spectrum of DMs to efficiently select the most appropriate MADM method for their ranking DP at hand.
dc.description.sponsorship'Future Cabin for the Asian Market'
dc.identifier.citationKirensky, Roman; Lawson, Craig; Salonitis, Konstantinos (2021). ProBCA Taxonomy of Discrete MCDA Methods for Ranking. Cranfield Online Research Data (CORD). Dataset. https://doi.org/10.17862/cranfield.rd.13420022
dc.identifier.doi10.17862/cranfield.rd.13420022
dc.identifier.urihttps://dspace.lib.cranfield.ac.uk/handle/1826/22457
dc.publisherCranfield University
dc.relation.supplementshttps://doi.org/10.1016/j.ejor.2010.03.009
dc.relation.supplementshttps://doi.org/10.1007/978-1-4757-2618-3_5
dc.relation.supplementshttps://doi.org/10.1016/j.knosys.2019.105317
dc.relation.supplementshttps://doi.org/10.1016/j.eswa.2012.02.076
dc.relation.supplementshttps://doi.org/10.1007/bf00995887
dc.relation.supplementshttps://doi.org/10.1109/TSMCC.2003.809354
dc.relation.supplementshttps://doi.org/10.4018/978-1-59904-843-7
dc.relation.supplementshttps://doi.org/10.3846/tede.2010.10
dc.relation.supplementshttps://doi.org/10.3846/transport.2010.52
dc.relation.supplementshttps://doi.org/10.15388/Informatica.2010.307
dc.relation.supplementshttps://doi.org/10.1051/ro/2021083
dc.relation.supplementshttps://doi.org/10.1007/978-94-017-0767-1_17
dc.relation.supplementshttps://doi.org/10.1109/TSMC.1984.6313267
dc.relation.supplementshttps://doi.org/10.1080/17509653.2019.1633964
dc.relation.supplementshttps://doi.org/10.1016/j.ins.2020.08.119
dc.relation.supplementshttps://doi.org/10.1080/05695557208974822
dc.relation.supplementshttps://doi.org/10.3389/fbuil.2020.00026
dc.relation.supplementshttps://doi.org/10.1016/j.omega.2014.11.009
dc.relation.supplementshttps://doi.org/10.3390/math9161881
dc.relation.supplementshttps://doi.org/10.1086/208721
dc.relation.supplementshttps://doi.org/10.1016/j.ins.2014.02.130
dc.relation.supplementshttps://doi.org/10.1016/j.wasman.2006.01.008
dc.relation.supplementshttps://doi.org/10.1016/j.tranpol.2018.01.013
dc.relation.supplementshttps://doi.org/10.1016/j.knosys.2008.03.047
dc.relation.supplementshttps://doi.org/10.4314/jasem.v23i8.7
dc.relation.supplementshttps://doi.org/10.36334/modsim.2019.B3.beliakov
dc.relation.supplementshttps://doi.org/10.1016/j.mcm.2009.07.016
dc.relation.supplementshttps://doi.org/10.1016/j.fss.2019.04.008
dc.relation.supplementshttps://doi.org/10.1007/0-387-23081-5_14
dc.relation.supplementshttps://doi.org/10.24818/18423264/54.2.20.04
dc.relation.supplementshttps://doi.org/10.1016/j.jairtraman.2020.101948
dc.relation.supplementshttps://doi.org/10.1108/MD-05-2017-0458
dc.relation.supplementshttps://doi.org/10.3846/jcem.2019.11309
dc.relation.supplementshttps://doi.org/10.1002/mcda.1525
dc.relation.supplementshttps://doi.org/10.3846/1392-3730.2008.14.3
dc.relation.supplementshttps://doi.org/10.1016/j.dss.2006.06.009
dc.relation.supplementshttps://doi.org/10.1287/opre.2014.1274
dc.relation.supplementshttps://doi.org/10.1016/j.ijhm.2011.02.001
dc.relation.supplementshttps://doi.org/10.1016/j.eswa.2011.09.069
dc.relation.supplementshttps://doi.org/10.1007/978-1-4757-2383-0_3
dc.relation.supplementshttps://doi.org/10.1037/h0047832
dc.relation.supplementshttps://doi.org/10.1016/j.omega.2019.04.001
dc.relation.supplementshttps://doi.org/10.1016/j.ecolecon.2013.07.010
dc.relation.supplementshttps://doi.org/10.1016/j.chemolab.2019.06.005
dc.relation.supplementshttps://doi.org/10.1007/s12351-018-0390-5
dc.relation.supplementshttps://doi.org/10.1016/j.eswa.2011.02.017
dc.relation.supplementshttps://doi.org/10.1037/h0032955
dc.relation.supplementshttps://doi.org/10.1016/j.eiar.2011.01.014
dc.relation.supplementshttps://doi.org/10.1016/j.ejor.2011.03.045
dc.relation.supplementshttps://doi.org/10.1586/14737167.2015.1083863
dc.relation.supplementshttps://doi.org/10.1007/978-3-540-92828-7_13
dc.relation.supplementshttps://doi.org/10.1109/21.259681
dc.relation.supplementshttps://doi.org/10.1068/b090
dc.relation.supplementshttps://doi.org/10.1007/978-3-642-46768-4
dc.relation.supplementshttps://doi.org/10.1142/S0219622011004713
dc.relation.supplementshttps://doi.org/10.1016/j.eswa.2011.01.031
dc.relation.supplementshttps://doi.org/10.1016/j.amc.2005.11.163
dc.relation.supplementshttps://doi.org/10.2495/SC150231
dc.relation.supplementshttps://doi.org/10.1007/s12351-018-00444-2
dc.relation.supplementshttps://doi.org/10.1109/SMDCM.2011.5949271
dc.relation.supplementshttps://doi.org/10.3390/sym10090393
dc.relation.supplementshttps://doi.org/10.1016/j.camwa.2007.09.009
dc.relation.supplementshttps://doi.org/10.1080/07421222.1994.11518029
dc.relation.supplementshttps://doi.org/10.1016/j.ejor.2008.02.006
dc.relation.supplementshttps://doi.org/10.1007/978-1-84628-819-7
dc.relation.supplementshttps://doi.org/10.1007/978-3-642-48318-9
dc.relation.supplementshttps://doi.org/10.1115/1.1814389
dc.relation.supplementshttps://doi.org/10.1002/mcda.1723
dc.relation.supplementshttps://doi.org/10.1007/s10100-013-0311-x
dc.relation.supplementshttps://doi.org/10.1111/roiw.12475
dc.relation.supplementshttps://doi.org/10.1108/09576060210411521
dc.relation.supplementshttps://doi.org/10.1016/j.matdes.2012.12.009
dc.relation.supplementshttps://doi.org/10.1142/S0219622016500036
dc.relation.supplementshttps://doi.org/10.1109/3477.752789
dc.relation.supplementshttps://doi.org/10.1088/1742-6596/305/1/012003
dc.relation.supplementshttps://doi.org/10.1109/PROC.1975.9765
dc.relation.supplementshttps://doi.org/10.1016/j.eswa.2008.05.034
dc.relation.supplementshttps://doi.org/10.1142/S0219622014500825
dc.relation.supplementshttps://doi.org/10.1142/S0219622017500274
dc.relation.supplementshttps://doi.org/10.1016/j.asoc.2012.11.013
dc.relation.supplementshttps://doi.org/10.1016/j.eij.2013.05.001
dc.relation.supplementshttps://doi.org/10.1016/j.eswa.2014.11.057
dc.relation.supplementshttps://doi.org/10.1016/j.acme.2015.10.002
dc.relation.supplementshttps://doi.org/10.1016/j.omega.2013.05.006
dc.relation.supplementshttps://doi.org/10.1016/j.ijpe.2013.02.009i
dc.relation.supplementshttps://doi.org/10.1016/j.eswa.2021.114686
dc.relation.supplementshttps://doi.org/10.1016/j.asoc.2019.105893
dc.relation.supplementshttps://doi.org/10.1287/opre.40.6.1053
dc.relation.supplementshttps://doi.org/10.1016/j.eswa.2018.01.004
dc.relation.supplementshttps://doi.org/10.3846/20294913.2016.1150363
dc.relation.supplementshttps://doi.org/10.1016/j.omega.2011.09.003
dc.rightsCC BY 4.0
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.subject'MCDA'
dc.subject'decision-making models'
dc.subject'decision-analysis'
dc.subject'choice framework'
dc.subject'selection criteria'
dc.subject'Artificial Intelligence'
dc.subject'Taxonomic analysis'
dc.subject'Operations Research'
dc.subject'Mathematical Logic
dc.subjectSet Theory
dc.subjectLattices and Universal Algebra'
dc.subject'Decision Theory'
dc.subject'Decision Making'
dc.subject'Decision Support and Group Support Systems'
dc.titleProBCA Taxonomy of Discrete MCDA Methods for Ranking
dc.typeDataset

Files

Original bundle

Now showing 1 - 5 of 8
Loading...
Thumbnail Image
Name:
ProBCA Taxonomy of MADM Methods for Ranking - core (issue 3).xlsx
Size:
1.49 MB
Format:
Microsoft Excel XML
Loading...
Thumbnail Image
Name:
ProBCA Taxonomy of MADM Methods for Ranking - sheet 0 (Title).pdf
Size:
321.17 KB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
ProBCA Taxonomy of MADM Methods for Ranking - sheet 1 (Taxonomy).oxps
Size:
2.7 MB
Format:
Unknown data format
Loading...
Thumbnail Image
Name:
ProBCA Taxonomy of MADM Methods for Ranking - sheet 1 (Taxonomy).pdf
Size:
2.68 MB
Format:
Adobe Portable Document Format
Loading...
Thumbnail Image
Name:
ProBCA Taxonomy of MADM Methods for Ranking - sheet 2 (Parameters).oxps
Size:
1.56 MB
Format:
Unknown data format

Collections