High-precision machining behavior of the single crystal scintillator, bismuth germanate (Bi4Ge5O12)

dc.contributor.authorTaieb, Kahina
dc.contributor.authorBelkhir, Nabil
dc.contributor.authorKhennab, Abdelghani
dc.contributor.authorRogers, Edith
dc.contributor.authorGiusca, Claudiu
dc.contributor.authorBizarri, Gregory
dc.date.accessioned2025-07-01T14:34:34Z
dc.date.available2025-07-01T14:34:34Z
dc.date.freetoread2025-07-01
dc.date.issued2025-06-01
dc.date.pubOnline2025-04-25
dc.description.abstractThis study focuses on understanding the machinability of a single-crystal scintillator, Bismuth Germanate (BGO), a material widely used in Time-of-Flight Positron Emission Tomography (ToF-PET). The micromachining process of such a hard, brittle material presents several challenges, particularly in maintaining surface integrity without inducing fractures or microcracks. In this work, we employed the Johnson-Holmquist 2 (JH-2) material model to simulate the micro-milling process of BGO. Experimental data from quasi-static uniaxial compression and split tests were used to estimate the key parameters for the JH-2 model. The simulation results closely aligned with experimental outcomes, confirming the reliability of the model in capturing the mechanical behavior of BGO under stress. Simulations were conducted with different machining parameters, successfully replicating the conditions observed in practical machining tests. Our findings demonstrate the impact of feed rate and depth of cut on the machinability of BGO, validating the use of the JH-2 model of this material. Looking ahead, this robust computational framework offers the potential to further optimize the machining process, ultimately enabling the production of high-performance heterostructures for scintillator applications in TOF-PET.
dc.description.journalNameMaterials Today Communications
dc.description.sponsorshipEngineering and Physical Sciences Research Council (EPSRC)
dc.description.sponsorshipThis work was supported by the UK Engineering and Physical Sciences Research Council (EPSRC) grant EP/S013652/1 for Cranfield University. The authors would like to thank Dr D. Johnson and Mrs C. Kimpton for SEM measurements.
dc.identifier.citationTaieb K, Belkhir N, Khennab A, et al., (2025) High-precision machining behavior of the single crystal scintillator, bismuth germanate (Bi4Ge5O12). Materials Today Communications, Volume 46, June 2025, Article number 112620en_UK
dc.identifier.eissn2352-4928
dc.identifier.elementsID672943
dc.identifier.issn2352-4928
dc.identifier.paperNo112620
dc.identifier.urihttps://doi.org/10.1016/j.mtcomm.2025.112620
dc.identifier.urihttps://dspace.lib.cranfield.ac.uk/handle/1826/24096
dc.identifier.volumeNo46
dc.languageEnglish
dc.language.isoen
dc.publisherElsevieren_UK
dc.publisher.urihttps://www.sciencedirect.com/science/article/pii/S2352492825011328?via%3Dihub
dc.relation.isreferencedbyhttps://doi.org/10.57996/cran.ceres-2699
dc.relation.isreferencedbyhttps://dspace.lib.cranfield.ac.uk/handle/1826/23386
dc.rightsAttribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectBismuth Germanate (BGO)en_UK
dc.subjectMicromachiningen_UK
dc.subjectToF-PETen_UK
dc.subjectJohnson-Holmquist 2 (JH-2) modelen_UK
dc.subject4014 Manufacturing Engineeringen_UK
dc.subject40 Engineeringen_UK
dc.subject3403 Macromolecular and materials chemistryen_UK
dc.subject4016 Materials engineeringen_UK
dc.subject4018 Nanotechnologyen_UK
dc.titleHigh-precision machining behavior of the single crystal scintillator, bismuth germanate (Bi4Ge5O12)en_UK
dc.typeArticle
dc.type.subtypeJournal Article
dcterms.dateAccepted2025-04-21

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
High-precision_machining-2025.pdf
Size:
10.86 MB
Format:
Adobe Portable Document Format
Description:
Published version

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.63 KB
Format:
Plain Text
Description: