Kolmogorov-Chaitin complexity of digital controller implementations.
dc.contributor.author | Whidborne, James F. | - |
dc.contributor.author | McKernan, John | - |
dc.contributor.author | Gu, Da-Wei | - |
dc.date.accessioned | 2011-11-17T23:01:42Z | |
dc.date.available | 2011-11-17T23:01:42Z | |
dc.date.issued | 2006-07-01T00:00:00Z | - |
dc.description.abstract | The complexity of linear, fixed-point arithmetic digital controllers is investigated from a Kolmogorov-Chaitin perspective. Based on the idea of Kolmogorov-Chaitin complexity, practical measures of complexity are developed for statespace realizations, parallel and cascade realizations, and for a newly proposed generalized implicit state-space realization. The complexity of solutions to a restricted complexity controller benchmark problem is investigated using this measure. The results show that from a Kolmogorov-Chaitin viewpoint, higher-order controllers with a shorter word-length may have lower complexity and better performance, than lower-order controllers with longer word-length. | en_UK |
dc.identifier.citation | James F. Whidborne, John McKernan, Da-Wei Gu. Kolmogorov-Chaitin Complexity of Digital Controller Implementations. International Journal of Automation and Computing, Vol. 3 No.3, July 2006 pg 314-322 | - |
dc.identifier.issn | 1476-8186 | - |
dc.identifier.uri | http://dx.doi.org/10.1007/s11633-006-0314-3 | - |
dc.identifier.uri | http://dspace.lib.cranfield.ac.uk/handle/1826/1235 | |
dc.publisher | Springer Science Business Media | en_UK |
dc.subject | Controller complexity | en_UK |
dc.subject | finite-precision arithmetic | en_UK |
dc.subject | finite word length | en_UK |
dc.subject | digital controller | en_UK |
dc.subject | Kolmogorov-Chaitin complexity | en_UK |
dc.title | Kolmogorov-Chaitin complexity of digital controller implementations. | en_UK |
dc.type | Article | - |