Trajectory intent prediction of autonomous systems using dynamic mode decomposition

dc.contributor.authorPerrusquía, Adolfo
dc.contributor.authorWei, Zhuangkun
dc.contributor.authorGuo, Weisi
dc.date.accessioned2025-02-27T10:40:49Z
dc.date.available2025-02-27T10:40:49Z
dc.date.freetoread2025-02-27
dc.date.issued2024-12-01
dc.date.pubOnline2024-09-24
dc.description.abstractProliferation of autonomous systems have increased the threat space and the economic risk in several national infrastructures, e.g., at airports. Therefore, reliable detection of their intention is paramount to ensure smooth operation of national services and societal safety. This article reports a data-driven trajectory intent prediction algorithm which is based on a linear model structure of the autonomous system dynamics obtained from a dynamic mode decomposition algorithm. The model computation is enhanced by two sources of physics informed knowledge associated to the energy functional. Two different prediction algorithms that consider fixed or time-varying references are designed in terms of the availability of control input measurements. Rigorous theoretical results are provided to support the approach using matrix decomposition and optimization techniques. Simulation and experimental studies are carried out to verify the effectiveness of the proposal.
dc.description.journalNameIEEE Transactions on Systems, Man, and Cybernetics: Systems
dc.description.sponsorshipRoyal Academy of Engineering, Engineering and Physical Sciences Research Council, UK Research and Innovation
dc.description.sponsorshipEngineering and Physical Sciences Research Council (Grant Number: EP/V026763/1).
dc.description.sponsorshipRoyal Academy of Engineering and the Office of the Chief Science Adviser for National Security under the U.K. Intelligence Community Postdoctoral Research Fellowship Programme.
dc.format.extentpp. 7897-7908
dc.identifier.citationPerrusquía A, Wei Z, Guo W. (2024) Trajectory intent prediction of autonomous systems using dynamic mode decomposition. IEEE Transactions on Systems, Man, and Cybernetics: Systems, Volume 54, Issue 12, December 2024, pp. 7897-7908en_UK
dc.identifier.eissn2168-2232
dc.identifier.elementsID554090
dc.identifier.issn2168-2216
dc.identifier.issueNo12
dc.identifier.urihttps://doi.org/10.1109/tsmc.2024.3462790
dc.identifier.urihttps://dspace.lib.cranfield.ac.uk/handle/1826/23524
dc.identifier.volumeNo54
dc.language.isoen
dc.publisherIEEEen_UK
dc.publisher.urihttps://ieeexplore.ieee.org/document/10689671
dc.rightsAttribution 4.0 Internationalen
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectTrajectoryen_UK
dc.subjectAutonomous systemsen_UK
dc.subjectPredictive modelsen_UK
dc.subjectPrediction algorithmsen_UK
dc.subjectHeuristic algorithmsen_UK
dc.subjectVectorsen_UK
dc.subjectData modelsen_UK
dc.subjectlinear approximationen_UK
dc.subjectdynamic mode decomposition (DMD)en_UK
dc.subjectphysics informeden_UK
dc.subjecttrajectory intent predictionen_UK
dc.subject46 Information and Computing Sciencesen_UK
dc.subject4007 Control Engineering, Mechatronics and Roboticsen_UK
dc.subject40 Engineeringen_UK
dc.titleTrajectory intent prediction of autonomous systems using dynamic mode decompositionen_UK
dc.typeArticle
dc.type.subtypeJournal Article
dcterms.dateAccepted2024-09-15

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Trajectory_Intent_Prediction-2024.pdf
Size:
1.51 MB
Format:
Adobe Portable Document Format
Description:
Accepted version

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.63 KB
Format:
Plain Text
Description: