Browsing by Author "Dicken, Anthony"
Now showing 1 - 12 of 12
Results Per Page
Sort Options
Item Open Access Age-related changes in femoral head trabecular microarchitecture(Buck Institute for Age Research, 2017-10-11) Greenwood, Charlene; Clement, John; Dicken, Anthony; Evans, Paul; Lyburn, Iain Douglas; Martin, Richard M.; Stone, Nick; Zioupos, Peter; Rogers, KeithOsteoporosis is a prevalent bone condition, characterised by low bone mineral density and increased fracture risk. Currently, the gold standard for identifying osteoporosis and increased fracture risk is through quantification of bone mineral density using dual energy X-ray absorption. However, many studies have shown that bone strength, and consequently the probability of fracture, is a combination of both bone mass and bone ‘quality’ (architecture and material chemistry). Although the microarchitecture of both non-fracture and osteoporotic bone has been previously investigated, many of the osteoporotic studies are constrained by factors such as limited sample number, use of ovariectomised animal models, and lack of male and female discrimination. This study reports significant differences in bone quality with respect to the microarchitecture between fractured and non-fractured human femur specimens. Micro-computed tomography was utilised to investigate the microarchitecture of femoral head trabecular bone from a relatively large cohort of non-fracture and fracture human donors. Various microarchitectural parameters have been determined for both groups, providing an understanding of the differences between fracture and non -fracture material. The microarchitecture of non-fracture and fracture bone tissue is shown to be significantly different for many parameters. Differences between sexes also exist, suggesting differences in remodelling between males and females in the fracture group. The results from this study will, in the future, be applied to develop a fracture model which encompasses bone density, architecture and material chemical properties for both female and male tissues.Item Open Access Confocal energy-dispersive X-ray diffraction tomography employing a conical shell beam(Optical Society of America, 2019-07-01) Dicken, Anthony; Evans, J. Paul O.; Rogers, Keith; Prokopiou, Danae; Godber, Simon; Elarnaut, F.; Shevchuk, Alex; Downes, D.; Wilson, M.We introduce a new high-energy X-ray diffraction tomography technique for volumetric materials characterization. In this method, a conical shell beam is raster scanned through the samples. A central aperture optically couples the diffracted flux from the samples onto a pixelated energy-resolving detector. Snapshot measurements taken during the scan enable the construction of depth-resolved dark-field section images. The calculation of dspacing values enables the mapping of material phase in a volumetric image. We demonstrate our technique using five ~15 mm thick, axially separated samples placed within a polymer tray of the type used routinely in airport security stations. Our method has broad analytical utility due to scalability in both scan size and X-ray energy. Additional application areas include medical diagnostics, materials science, and process controlItem Open Access Conical shell illumination incorporating a moving aperture for depth-resolved high-energy X-ray diffraction(Royal Society of Chemistry, 2023-01-16) Spence, Daniel; Dicken, Anthony; Downes, David; Rogers, Keith; Evans, PaulIn many applications, the main limitation of X-ray absorption methods is that the signals measured are a function of the attenuation coefficient, which tells us almost nothing about the chemical or crystallographic nature of objects under inspection. To calculate fundamental crystallographic parameters requires the measurement of diffracted photons from a sample. Standard laboratory diffraction methods have been refined for well over a century and provide ‘gold standard’ structural models for well-prepared samples and single crystals but have little applicability for thick heterogeneous samples as demanded by many screening applications. We present a new high-energy X-ray diffraction probe, which in comparison with previous depth-resolving hollow beam techniques, requires a single beam, point detector and a simple swept aperture to resolve sample signatures at unknown locations within an inspection space. We perform Monte Carlo simulations to support experiments on both single- and multiple-material localisation and identification. The new probe is configured and tested using low-cost commercial components to provide a rapid and cost-effective solution for applications including explosives detection, process control and diagnostics.Item Open Access Data supporting "A new parafocusing paradigm for X-ray diffraction"(Cranfield University, 2020-12-09 10:07) Prokopiou, Danae; McGovern, James; Davies, Gareth; Godber, Simon; Rogers, Keith; Evans, Paul; Dicken, AnthonyA new approach to parafocusing X-ray diffraction implemented with an annular incident beam is demonstrated for the first time. The method exploits an elliptical specimen path on a flat sample to produce relatively high intensity maxima that can be measured with a point detector. It is shown that the flat-specimen approximation tolerated by conventional Bragg–Brentano geometries is not required. A theoretical framework, simulations and experimental results for both angular- and energy-dispersive measurement modes are presented and the scattering signatures compared with data obtained with a conventional pencil-beam arrangement.Item Open Access Diffraction enhanced kinetic depth X-ray imaging(2013-12-04) Dicken, Anthony; Rogers, Keith; Evans, P.An increasing number of fields would benefit from a single analytical probe that can characterise bulk objects that vary in morphology and/or material composition. These fields include security screening, medicine and material science. In this study the X-ray region is shown to be an effective probe for the characterisation of materials. The most prominent analytical techniques that utilise X-radiation are reviewed. The study then focuses on methods of amalgamating the three dimensional power of kinetic depth X-ray (KDFX) imaging with the materials discrimination of angular dispersive X-ray diffraction (ADXRD), thus providing KDEX with a much needed material specific counterpart. A knowledge of the sample position is essential for the correct interpretation of diffraction signatures. Two different sensor geometries (i.e. circumferential and linear) that are able to collect end interpret multiple unknown material diffraction patterns and attribute them to their respective loci within an inspection volume are investigated. The circumferential and linear detector geometries are hypothesised, simulated and then tested in an experimental setting with the later demonstrating a greater ability at discerning between mixed diffraction patterns produced by differing materials. Factors known to confound the linear diffraction method such as sample thickness and radiation energy have been explored and quantified with a possible means of mitigation being identified (i.e. via increasing the sample to detector distance). A series of diffraction patterns (following the linear diffraction appoach) were obtained from a single phantom object that was simultaneously interrogated via KDEX imaging. Areas containing diffraction signatures matched from a threat library have been highlighted in the KDEX imagery via colour encoding and match index is inferred by intensity. This union is the first example of its kind and is called diffraction enhanced KDEX imagery. Finally an additional source of information obtained from object disparity is explored as an alternative means of calculating sample loci. This offers a greater level of integration between these two complimentary techniques as object disparity could be used to reinforce the results produced by the linear diffraction geometry.Item Open Access Dual conical shell illumination for volumetric high-energy x-ray diffraction imaging(Royal Society of Chemistry, 2018-09-13) Dicken, Anthony; Spence, Daniel; Rogers, Keith; Prokopiou, Danae; Evans, PaulTo retrieve crystallographic information from extended sample volumes requires a high-energy probe. The use of X-rays to combine imaging with materials characterisation is well-established. However, if fundamental crystallographic parameters are required, then the collection and analysis of X-rays diffracted by the inspected samples are prerequisites. We present a new X-ray diffraction imaging architecture, which in comparison with previous depth-resolving hollow beam techniques requires significantly less X-ray power or alternatively supports significantly increased scanning speeds. Our conceptual configuration employs a pair of conical shell X-ray beams derived from a single point source to illuminate extended samples. Diffracted flux measurements would then be obtained using a pair of energy resolving point detectors. This dual beam configuration is tested using a single X-ray beam set-up employing a dual scan. The use of commercial off-the-shelf low-cost components has the potential to provide rapid and cost-effective performance in areas including industrial process control, medical imaging and explosives detection.Item Open Access The effect of fabric mass per unit area and blood impact velocity on bloodstain morphology(Elsevier, 2019-05-09) Dicken, Anthony; Knock, Clare; Beckett, Sophie; Carr, Debra J.This paper discusses the effects of thickness, mass per unit area, sett, yarn linear density and twist of calico fabrics (100% cotton, plain woven) on the morphology of passive bloodstains. Horse blood was dropped vertically onto three calico fabrics with different mass per unit areas (85.1 g/m², 163.5 g/m² and 224.6 g/m²). Six different impact velocities were used (1.7 ms-1, 2.9 ms-1, 4.1 ms-1, 4.9 ms-1, 5.1 ms-1 and 5.4 ms-1). The dry bloodstains were largest on the calico with the lightest mass per unit area. The low yarn linear density and large inter-yarn spaces meant that the blood could wick into the yarns from all directions and along the intra-yarn spaces. The calico with the middle mass per unit area had the smallest mean dry bloodstain area for four out of the six velocities. The twist level for this calico was greater than for the calicos with a heavier or lighter mass per unit area. This reduced the amount of wicking which occurred along the yarns due to the tighter yarn structure. The calico with the heaviest mass per unit area had the highest yarn linear density resulting in a thicker fabric, so the blood could not as easily penetrate into the fabric. This resulted in a thicker wet blood layer remaining on the fabric surface, where it gradually wicked vertically into the yarns under gravity. Less wicking along the yarns occurred, resulting in a smaller bloodstain than on the fabric with the lightest mass per unit area. The correlation between impact velocity and mean dry bloodstain area was greater for the calicos with the medium and heaviest mass per unit area than for the calico with the lightest mass per unit area. For the calicos with the medium and heaviest mass per unit area, the distance the blood spread laterally at impact, which increased with the increase in impact velocity, had a greater influence on the dry bloodstain area than the amount of wicking.Item Open Access High energy transmission annular beam X-ray diffraction(Optical Society of America, 2015-02-02) Dicken, Anthony; Shevchuk, Alex; Rogers, Keith; Godber, Simon; Evans, PaulWe demonstrate material phase retrieval by linearly translating extended polycrystalline samples along the symmetry axis of an annular beam of high-energy X-rays. A series of pseudo-monochromatic diffraction images are recorded from the dark region encompassed by the beam. We measure Bragg maxima from different annular gauge volumes in the form of bright spots in the X-ray diffraction intensity. We present the experiment data from three materials with different crystallographic structural properties i.e. near ideal, large grain size and preferred orientation. This technique shows great promise for analytical inspection tasks requiring highly penetrating radiation such as security screening, medicine and nondestructive testing.Item Open Access A new parafocusing paradigm for X-ray diffraction(International Union of Crystallography, 2020-07-24) Prokopiou, Danae; McGovern, James; Davies, Gareth; Godber, Simon; Evans, Paul; Dicken, Anthony; Rogers, KeithA new approach to parafocusing X-ray diffraction implemented with an annular incident beam is demonstrated for the first time. The method exploits an elliptical specimen path on a flat sample to produce relatively high intensity maxima that can be measured with a point detector. It is shown that the flat-specimen approximation tolerated by conventional Bragg–Brentano geometries is not required. A theoretical framework, simulations and experimental results for both angular- and energy-dispersive measurement modes are presented and the scattering signatures compared with data obtained with a conventional pencil-beam arrangement.Item Open Access Position determination of scatter signatures – A novel sensor geometry(Elsevier, 2010-09-25) Dicken, Anthony; Rogers, Keith; Evans, Paul; Rogers, Joseph; Chan, Jer Wang; Xun, WangA novel diffraction sensor geometry able to provide the diffraction pattern of a suspect material without prior knowledge of the samples location is introduced. The sensor geometry can also resolve diffraction patterns originating from multiple unknown materials overlapped along the primary X-ray beam path. This is achieved through tracking Bragg peak maxima that linearly propagate from the inspection volume at a series of X-ray detector positions. A series of simulations and experiments have been performed to verify this technique and provide an insight into its characteristics. Such a technique could have widespread appeal in the security industry. Areas of most relevance include the materials characterisation of volumes such as those prevalent in an airport screening environment or equally the rapid screening for illicit drugs trafficked through the postal system.Item Open Access Simulations and experimental demonstrations of encoding for X-ray coherent scattering(International Union of Crystallography, 2017-04-01) Prokopiou, Danae; Smith, Kerrie L.; Rogers, Keith; Paula, P.; Evans, Paul; Dicken, Anthony; Godber, S.Diffraction data may be measured using approaches that lead to ambiguity in the interpretation of scattering distributions. Thus, the encoding and decoding of coherent scatter distributions have been considered with a view to enabling unequivocal data interpretation. Two encoding regimes are considered where encoding occurs between the X-ray source and sample, and where the encoder is placed between the sample and detector. In the first case, the successful recovery of diffraction data formed from the interrogation of powder samples with annular incident beams is presented using a coded aperture approach. In a second regime, encoding of Debye cones is shown to enable recovery of sample position relative to the detector. The errors associated with both regimes are considered and the advantages of combining both discussed.Item Open Access Towards new material biomarkers for fracture risk(2016-09-30) Greenwood, Charlene; Clement, J.; Dicken, Anthony; Evans, J.; Lyburn, Iain Douglas; Martin, R.; Rogers, Keith; Stone, N.; Zioupos, PeterOsteoporosis is a prevalent bone condition, characterised by low bone mass and increased fracture risk. Currently, the gold standard for identifying osteoporosis and increased fracture risk is through quantification of bone mineral density (BMD) using dual energy X-ray absorption (DEXA). However, the risk of osteoporotic fracture is determined collectively by bone mass, architecture and physicochemistry of the mineral composite building blocks. Thus DEXA scans alone inevitably fail to fully discriminate individuals who will suffer a fragility fracture. This study examines trabecular bone at both ultrastructure and microarchitectural levels to provide a detailed material view of bone, and therefore provides a more comprehensive explanation of osteoporotic fracture risk. Physicochemical characterisation obtained through X-ray diffraction and infrared analysis indicated significant differences in apatite crystal chemistry and nanostructure between fracture and non-fracture groups. Further, this study, through considering the potential correlations between the chemical biomarkers and microarchitectural properties of trabecular bone, has investigated the relationship between bone mechanical properties (e.g. fragility) and physicochemical material features.